Fourth-order quantum master equation and its Markovian bath limit
نویسندگان
چکیده
Fourth-order quantum master equations ~FQMEs! are derived in both time nonlocal and local forms for a general system Hamiltonian, with new detailed expressions for the fourth-order kernel, where the bath correlation functions are explicitly decoupled from the system superoperators. Further simplifications can be made for the model of linearly coupled harmonic oscillator bath. Consideration of the high temperature Ohmic bath limit leads to a general Markovian FQME with compact forms of time independent superoperators. Two examples of this equation are then considered. For the system of a quantum particle in a continuous potential field, the equation reduces to a known form of the quantum Fokker–Planck equation, except for a fourth-order potential renormalization term that can be neglected only in the weak system-bath interaction regime. For a two-level system with off-diagonal coupling to the bath, fourth-order corrections do not alter the relaxation characteristics of the second-order equation and introduce additional coherence terms in the equations for the off-diagonal elements. © 2002 American Institute of Physics. @DOI: 10.1063/1.1445105#
منابع مشابه
Non-Markovian Quantum Trajectories Versus Master Equations: Finite Temperature Heat Bath
Abstract The interrelationship between the non-Markovian stochastic Schrödinger equations and the corresponding non-Markovian master equations is investigated in the finite temperature regimes. We show that the general finite temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known d...
متن کاملDecoherence and quantum-classical master equation dynamics.
The conditions under which quantum-classical Liouville dynamics may be reduced to a master equation are investigated. Systems that can be partitioned into a quantum-classical subsystem interacting with a classical bath are considered. Starting with an exact non-Markovian equation for the diagonal elements of the density matrix, an evolution equation for the subsystem density matrix is derived. ...
متن کاملPost-Markov master equation for the dynamics of open quantum systems
A systematic first-order correction to the standard Markov master equation for open quantum systems interacting with a bosonic bath is presented. It extends the Markov Lindblad master equation to the more general case of non-Markovian evolution. The meaning and applications of our ‘post’-Markov master equation are illustrated with several examples, including a damped twolevel atom, the spin-bos...
متن کاملA Monte Carlo Method for Modeling Thermal Damping: Beyond the Brownian-Motion Master Equation
The “standard” Brownian motion master equation, used to describe thermal damping, is not completely positive, and does not admit a Monte Carlo method, important in numerical simulations. To eliminate both these problems one must add a term that generates additional position diffusion. He we show that one can obtain a completely positive simple quantum Brownian motion, efficiently solvable, with...
متن کاملQuantum master equation for a system influencing its environment.
A perturbative quantum master equation is derived for a system interacting with its environment, which is more general than the ones derived before. Our master equation takes into account the effect of the energy exchanges between the system and the environment and the conservation of energy in the finite total system. This master equation describes relaxation mechanisms in isolated nanoscopic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002